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In large-scale virtual screening (VS) campaigns, data are often computed for millions of
compounds to identify leads, but there remains the task of prioritizing VS “hits” for experimental
assays and the dilemma of assessing true/false positives. We present two statistical methods
for mining large databases: (1) a general scoring metric based on the VS signal-to-noise level
within a compound neighborhood; (2) a neighborhood-based sampling strategy for reducing
database size, in lieu of property-based filters.

Introduction

In structure-based virtual screening campaigns, large
compound databases are routinely docked to a protein
active site and estimated binding free energies are used
to select compounds for experimental testing. The
literature reflects that docking and scoring protocols
capture low-resolution information about ligand binding
but are limited in their ability to accurately predict
measured binding affinities.1,2 The problem of false posi-
tives and negatives in virtual screening is especially ap-
parent when docking large databases, where the num-
ber of compounds satisfying a “good” docking score, de-
fined by scoring positive-control ligands, can be much
larger than assay throughput. For example, in Figure
1 we compare the normalized Glide score3 distributions
of 57 validated, active-site directed, competitive inhibi-
tors of an enzyme target and a database of approximate-
ly one million compounds, the vast majority of which
are presumed to be inactive.4,5 Glide discriminates be-
tween the two data sets, but there is substantial overlap
between the distributions. Imposing a cutoff based on
the mean score of the positive controls would leave an
unreasonably large number of compounds to assay.
Further, assaying only the top-scoring compounds is not
a reasonable strategy either because a high percentage
of promising compounds would be disregarded. Because
binding affinity is only one of many parameters to be
considered in the profile of a lead drug, physical
property or ADME (absorption, distribution, metabo-
lism, and excretion) predictions are often implemented
as pre- or postdocking filters to reduce the number of
hits. However, these filters are also limited in accuracy
and can preempt the identification of novel leads.

Rather than focus on the rank-ordering of individual
compound scores, we exploit the information content of
virtual screening (VS) data within neighborhoods of
structurally related compounds to attenuate false as-
signment of positives and negatives. Examination of the

docking scores and predicted binding modes of related
compounds suggests that neighborhoods with consis-
tently good docking scores exhibit low-resolution, virtual
structure-activity relationships (SARs), upon which a
neighborhood analysis may be based.

In section I, we present a method that defines VS hits
in terms of the significance of neighborhood virtual SAR.
In section II, we present and validate a sampling
strategy for efficiently mining large compound data-
bases that can be implemented as an alternative to
imposing hard-cut ADME or property-based filters.
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Figure 1. Glide docking scores of 57 known, active-site
directed ligands are compared to the scores of a database of
approximately one million compounds, using normalized his-
tograms. All 57 compounds in the validation set had favorable
estimated free energies of binding (Glide-score < 0). The
average docking score for the validation set is -2.5 kcal/mol
lower than the average of the general database, indicating that
the Glide scoring function has some ability to discriminate
between compounds that do and do not bind to the target.
However, tens of thousands of compounds in the collection
meet the criterion of a “good” docking score (defined in this
case as -10 kcal/mol), which is far more than can be tested;
this is a common problem when docking very large databases
that mandates the use of additional filtering or selection
criteria.
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I. Neighborhood Scoring: N_score
We originally applied a neighborhood-based analysis

to high-throughput screening (HTS) data to assess the
likelihood of false positives and negatives. In contrast
to evaluating compound activity on an individual basis,
activity is assessed in the context of observed activity
(signal) within a neighborhood of structurally related
compounds. For example, an HTS hit that is in a
neighborhood containing mostly inactive compounds is
more likely to be a false positive than a hit found in a
neighborhood of active compounds (assuming random
error). Conversely, a compound that is not a HTS hit,
but which is closely related to a large number of active
compounds, is more likely to be a false negative than a
compound in a neighborhood of inactive compounds.
This concept was previously described in a strategy for
prioritizing compounds for screening in batches, where
known activity or inactivity of a hit’s analogues was
incorporated as positive or negative feedback during
selection cycles.6

We assess the likelihood that a compound is a true
(false) positive by computing the enrichment (depletion)
of activity within the compound neighborhood. In virtual
screening, “active” compounds correspond to those with
“good” docking scores, where the cutoff is based on the
scores of the validation set ligands with known activity
(see Figure 1). The binomial distribution B(X,N,P) gives
the probability of observing X actives in a sample of N
compounds, where the probability of observing X actives
at random is P, the overall hit rate of the virtual screen.
The sample is derived from a structurally related
neighborhood. A compound neighborhood that is sig-
nificantly enriched in activity (i.e., a neighborhood of
compounds that are most likely true positives) satisfies
the following inequality:

Similarly, a neighborhood is significantly depleted of
hits when

For convenience, we scale the computed p values to
define the following statistic for scoring compounds in
the context of neighborhood SARs:7

We typically apply a 95% confidence level criterion
to classify compounds into three categories: (1) Com-
pounds with N_score > 1.3 (p < 0.05) have neighbor-
hoods that are enriched with actives and are attractive
starting points for establishing SAR; hits from these
neighborhoods are more likely to be true positives. (2)
Compounds with N_score < -1.3 have neighborhoods
that are depleted of actives; hits from these neighbor-
hoods are more likely to be false positives. (3) Com-
pounds with 1.3 > N_score > -1.3 are indeterminate;
such compounds originate from sparsely populated
neighborhoods that lack adequate structural coverage
to significantly establish SAR or well-populated neigh-

borhoods that exhibit a level of activity that is similar
to the overall VS hit rate P.

The first step in computing N_score is to define
compound neighborhoods. In this study, it was conve-
nient to cluster the entire docking database, where the
resulting clusters define neighborhoods. Daylight fin-
gerprints8 were used to cluster the database, applying
a cutoff of 70% similarity (Tanimoto) to define clusters9

using a sphere exclusion method.6,10 As implemented,
each compound is assigned uniquely to a cluster and
N_score is computed for each cluster.11 Martin et al.
recently investigated whether calculations of molecular
similarity translate into factors that lead to biological
similarity for the purposes of designing combinatorial
libraries and selecting diverse compounds to augment
compound collections.12 Their observations show that
two similar compounds, as defined by Daylight finger-
prints, are more likely to share biological properties
than are two compounds selected at random. The
correlation, sometimes low, varies with the threshold
used to define similarity. Other investigations, sum-
marized by Martin et al., report varying degrees of
correlation between computationally defined structure
classes and biological activity, with Unity and Daylight
fingerprints tending to outperform other types of de-
scriptors. Given its generality, any meaningful similar-
ity metric or clustering method can be used to compute
N_score. We did not investigate how alternative cluster-
ing techniques or similarity metrics might amplify
different regions of SAR because this was beyond the
scope of this communication.

In our docking campaign, the evaluation of N_score
enabled the identification of several thousand compound
clusters as hits (N_score > 1.3), as shown in Figure 2.
Four or fewer representative compounds, depending on
availability, were then selected from approximately 300
neighborhoods defined with N_score g 10, comprising
approximately 700 compounds, which was compatible
with our assay throughput. There was no correlation
between cluster size and N_score (plot not shown),
although larger clusters have a larger possible range
of N_score.

An unexpected result of our docking campaign was
that among the experimentally confirmed hits was a
compound series that would have been eliminated before
docking if common prefilters had been applied. Yet this

∫X

N
B(x,N,P) dx e p (1)

∫0

X
B(x,N,P) dx e p (2)

N_score ) sign(X - N‚P)[-log ∫x1

x2B(x,N,P) dx] (3)

Figure 2. Histogram of N_score values for all neighborhoods
in the docking database (∼1 million compounds). N_score at
the extremes (>1.3 and <-1.3) indicate true and false positive
compound neighborhoods, respectively. The neighborhoods
that are most likely to contain true positives and SAR for
establishing leads have the largest positive N_score (e.g.,
N_score . 1.3). In contrast, the vast majority of neighborhoods,
as shown in the inset, fall in the central region between -1.3
and +1.3, corresponding to the less interesting sparse neigh-
borhoods (singletons) or neighborhoods with an SAR signal
that is similar to noise.
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series was a viable starting point. With minor synthetic
modifications that did not diminish the binding affinity,
the series passed the prefiltering criterion that it
originally failed. While our original motivation for not
prefiltering the database was a lack of viable leads from
other methods, like HTS, this result suggests to us that
a “leave no stone unturned” approach may be desirable
for other targets as well.

II. Managing the Size of Docking Databases
Using Sampling by Variables

It has been proposed in the literature that compound
databases should be first filtered on the basis of ADME
properties, then screened to predict binding to the
protein or receptor of interest.13 Prefiltering is often
implemented to limit the size of large databases or in
an effort to focus on compounds that are the most
leadlike or druglike. The argument is that known drug-
like compounds are limited in diversity relative to the
entire set of known compounds and fall within distribu-
tions of relatively simple descriptors (e.g., MW, cLogP,
H-bond counts, etc.). Therefore, the accumulated knowl-
edge about properties of orally active drugs can be appli-
ed to drug discovery, regardless of the target. However,
with recognition that examples of orally bioavailable
drugs can be found that violate any number of physical
and chemical property filters and confound ADME
prediction tools, database prefiltering may preempt the
discovery of families of compounds that contain recogni-
tion features that are not otherwise represented in a
database, as was our experience described in section I.

To retain the chemical diversity of large databases
and at the same time enable large-scale virtual screen-
ing, we developed a neighborhood sampling strategy. We
emphasize that this is a general method for determining
how many structurally related compounds need to be
screened or tested in order to estimate the overall be-
havior of the neighborhood within user-defined limits of
acceptable error. One can imagine, for example, design-
ing a screening library from a corporate database using
this technique to determine how many compounds to
include within each structural class. We retrospectively
validate this approach in “Sampling Strategy Analysis”
below, using the large data set generated in the docking
campaign described above. In validating this method,
we ask the following question. If we had screened only
a select fraction of the database, could we have identi-
fied the same neighborhoods as in section I, where the
entire database was screened? To answer this question,
we analyze the recovery of neighborhoods with high
N_score values, found by exhaustive docking above.

Sampling plans are widely applied in commerce to
ensure quality control. Within mutually acceptable risk
limits, product lots are accepted or rejected on the basis
of the quality of the sample that is examined.14 Sam-
pling plans are constructed by first defining the reason-
able risks of accepting an “undesirable” lot and of
rejecting a “desirable” lot.

In our case, a “lot” is a neighborhood of related
compounds. We determine the sample size n and the
mean dock score of the sample compounds, k, that will
provide statistically meaningful information upon which
to accept or reject the neighborhood of compounds. We
define the acceptable risk of accepting false positive

neighborhoods to be R ) 0.95 (if the true mean dock
score of the neighborhood is acceptable, we require the
probability of identifying the neighborhood as a hit to
be 95%) and adopt the same criterion for rejecting false
negatives: â ) 0.95.

The criterion for accepting a neighborhood is the
probability (t-distribution)15 that the mean dock score
of the neighborhood, µ, which is estimated by sampling,
is as favorable as a “good” dock score, defined here as
-10 kcal/mol:

Similarly, we define the risk for accepting a false
positive neighborhood, where -8 kcal/mol is defined to
be the cutoff for an unacceptable dock score:

By use of eqs 4 and 5, the number of compounds that
should be randomly sampled from each neighborhood
is a function of the standard deviation: n ) 1.20σ2.

In our investigation, the mean and maximal σ2 over
all neighborhoods are 0.9 and 5.8, disregarding all
compounds that do not fit in the active site.16 In practice,
one would not know the range of values of σ2, which
will depend on the docking software that is used. One
can estimate a value for σ2 to estimate n, for example,
by docking a representative neighborhood. This proce-
dure is approximate but not misleading, provided σ2 is
estimated generously. In our investigation, we imple-
ment a sample size n ) 30, which corresponds σ2 ) 25.

Sampling Strategy Analysis. In Figure 3, we show
that the neighborhood behavior that is observed when
the entire database is screened is well approximated by
sampling. “Layers” are observed, where the most favor-
able neighborhoods, those with N_score > 10 (which are

Figure 3. Large neighborhoods that are hits by neighborhood
analysis (O ) N_score > 1.3 and 0 ) N_score g 10) and
nonhits (× ) N_score e 1.3) are plotted by their sampled (n
) 30) average dock scores. Only neighborhoods containing 200
or more compounds are shown (288 neighborhoods). The
sampled average score for neighborhoods containing 199 or
fewer compounds (not shown) are better represented by
sampling than large neighborhoods because the sample size
n ) 30 comprises a larger fraction of the neighborhood.

k - (-10)

σ/xn
) -1.64 (4)

k - (-8)

σ/xn
) 1.64 (5)
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denoted by 0), also generally have the lowest mean dock
scores by sampling and where neighborhoods with
N_score between 1.3 and 10 (denoted by O) generally
score better than neighborhoods with N_score below 1.3
(denoted by ×).

In practice, one would determine how many com-
pounds can be tested with the available assay resources
and then pick representative compounds, starting with
neighborhoods having the lowest sampled mean dock
scores. For example, if resource were available to assay
several hundred compounds, this would effectively
correspond to a cutoff of k ) -9.0. Representative
compounds would be selected from the 68 neighborhoods
below the dotted line in Figure 3, 61 of which have an
N_score > 1.3 (circles below the cutoff line). This
includes 46 of the 50 neighborhoods with N_score g 10
(squares below the cutoff line).

The computational savings from implementing the
sampling strategy can be estimated after the initial
clustering. In our investigation, sampling only 30 from
each neighborhood or the entire neighborhood if it
contains fewer than 30 compounds reduces the size of
the docking database by 43%. This is in addition to the
approximately 10% database reduction associated with
the exclusion of singletons and neighborhoods that
contain very few compounds, which is appropriate for
both statistical methods presented in this paper.

The required initial database clustering does not
diminish the efficiency of the sampling strategy. Glide
requires on average 48 s of CPU time to dock a
compound with 0-10 rotatable bonds on a 1.3 GHz
Linux Pentium III. On a database of one million, the
53% reduction therefore reduces the cost of docking by
approximately 294 CPU days times the average number
of isomers per compound. In comparison, clustering the
database of approximately one million required less
than a week on a single processor with our in-house
software. Regardless of the number of processors to
which one has access, at some point there comes a
tradeoff between the number of compounds that can be
screened and the number of seconds that can be spent
per compound. This sampling strategy is a technique
that enables one to apply more accurate (but more time-
consuming) virtual screening techniques on a larger
database than would otherwise be possible.

Conclusions

The statistical methods presented here facilitate the
analysis and management of massive amounts of data
that are generated in large-scale virtual screens. Neigh-
borhood-based analysis of VS data capitalizes on low-
resolution, virtual SAR. In this study, N_score captures
the signal-to-noise level of SAR associated with a specific
docking procedure and molecular force field scoring
function (Glide), though N_score can be used with any
computed or experimental data. While N_score miti-
gates random error associated with virtual screening
protocols, it cannot compensate for systematic error,
underscoring the need for further development of ac-
curate molecular scoring functions and docking poses.
Databases with fewer than several hundred thousand
compounds can be docked even with modest resources,
and the results are prioritized using the N_score
analysis described above. For databases exceeding

several hundred thousand compounds, where one has
only limited computational resources, or for databases
containing several million compounds, we recommend
a neighborhood-based sampling strategy over property-
based filtering methods for managing database size.
Massive virtual screening, rather than massive prefil-
tering, may be essential for identifying viable leads.
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